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Melissa Freire Zimmera, Patricia Dutra Sauzema, Maribel Antonello Rubina,

Carlos Roque Duarte Correiab, Carlos Fernando Melloa,*

aCentro de Ciências Naturais e Exatas, Departamento de Quı́mica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS Brazil
bInstituto de Quı́mica, Universidade Estadual de Campinas, 13083-970 Campinas, SP Brazil
Received 11 March 2003; received in revised form 22 July 2003; accepted 5 August 2003
Abstract

This study investigated whether D,L-cis-2,3-Pyrrolidine dicarboxylate (D,L-cis-2,3-PDC), a new glutamate analogue, alters glutamate

binding to cerebral plasma membranes and whether N-methyl-D-aspartate (NMDA) receptors are involved in the convulsant effect of this

compound. D,L-cis-2,3-PDC reduced sodium-independent [3H]-L-glutamate binding to lysed membrane preparations from adult rat cortex

and had no effect on sodium-dependent glutamate binding. Intracerebroventricular administration of D,L-cis-2,3-PDC (7.5–25 nmol/5 Al)
induced generalized tonic–clonic convulsions in mice in a dose-dependent manner. The coadministration of MK-801 (7 nmol/2.5 Al), with
D,L-cis-2,3-PDC (16.5 nmol/2.5 Al), fully protected the animals against D,L-cis-2,3-PDC-induced convulsions, while the coadministration of

DNQX (10 nmol/2.5 Al) increased the latency to convulsions but did not alter the percentage of animals that had convulsions. These results

suggest that D,L-cis-2,3-PDC-induced effects are mediated predominantly by NMDA receptors.
D 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Glutamate and aspartate are the predominant excitatory

amino acid (EAA) neurotransmitters in the mammalian brain

(Kanai et al., 1993; Szatkowski and Attwell, 1994). The

EAAs activate a family of ligand-gated ion channels, called

ionotropic receptors [e.g., N-methyl-D-aspartate (NMDA),

kainic acid (KA), and alfa-amino-3-hydroxy-5-methyl-4-

isoxazolepropionate (AMPA)], and a family of receptors

coupled through GTP-binding proteins to a variety of intra-

cellular signaling molecules, called ‘‘metabotropic’’ recep-

tors (Conn and Patel, 1994; Hollman and Heinemann, 1994;

Nakanishi, 1994; Nicolletti et al., 1996). Metabotropic

receptors are activated by ligands such as trans-1-amino-

cyclopentane-1,3-dicarboxylate (1S,3R-ACPD), L-2-amino-

4-phosphonobutyric acid (L-AP-4), ibotenate, and quisqualic

acid (QA) (Hollman and Heinemann, 1994). EAA receptors
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participate not only in fast excitatory transmission but also in

more complex signaling processes, such as those required for

synaptic plasticity and higher cognitive functions (Daw et

al., 1993; Collingridge and Bliss, 1995; Cotman et al., 1995).

In contrast to these normal signaling pathways, excessive

activation of the ionotropic EAA receptors can trigger a

cascade of events that eventually leads to neuronal death.

This process, referred to as excitotoxicity, is thought to be an

underlying pathological mechanism in a wide variety of

neurological insults and degenerative disorders, such as

ischemia, trauma, hypoglycemia, epilepsy, and Huntington’s

and Parkinson’s diseases (Choi, 1990, 1994; Meldrum, 1993;

Rothman and Olney, 1995).

L-Glutamate has an acyclic structure that has a free

rotation at the space capable of assuming a wide range of

conformations. Accumulating evidence suggests that gluta-

mate may bind to each of the known EAA receptors and

transporters in a distinct conformation. A cornerstone in the

identification and characterization of the EAA receptors has

been the utilization of conformationally constrained ana-

logues of L-glutamate and L-aspartate. The application of the



Fig. 1. Comparison of conformational mobility of aspartate to cis-2,3-PDC.
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conformational restricted analogues concept related to as-

partate and glutamate is based on the construction of deriv-

atives on a cyclic framework, which imposes more restricted

angles on key structural and functional groups. The concept

is best illustrated by the Fig. 1 where cis-2,3-PDC is

compared to aspartate with regard to its flexibility (Watkins

et al., 1990; Ortwine et al., 1992; Chamberlin and Bridges,

1993). By positioning the carboxylate groups at differing

points around the ring, the carbon backbone of glutamate and

aspartate can be embedded within a cyclic structure (Willis et

al., 1997). These more rigid analogues can attain fewer of the

required conformations and very often exhibit greater selec-

tivity of binding than glutamate itself. These compounds

become valuable not only in further refining the pharmaco-

logical requirements of the receptor classes but as probes of

synaptic signaling and excitotoxic pathology (Willis et al.,

1996). Previous studies have identified (2S,4S)-pyrrolidine

dicarboxylate (L-trans-2,4-pyrrolidine dicarboxylate: L-trans-

2,4-PDC) as a potent and selective inhibitor of the high-

affinity, sodium-dependent glutamate transporter (Bridges et

al., 1991). Positioning the distal COOH at the C3 position

yielded L-cis-2,3-PDC (Humphrey et al., 1994) and L-trans-

2,3-PDC. This latest proved to be a weaker uptake inhibitor

but a potent NMDA agonist (Willis et al., 1996) whose

excitotoxic potency and selectivity towards NMDA recep-

tors are further increased by the introduction of a methyl

group to the 5V position of the pyrrolidine ring (Willis et al.,

1997). Nevertheless, the effects of cis pyrrolidine dicarbox-

ylate derivatives on the glutamatergic system were not

investigated to date. In the present study, we investigated

whether D,L-cis-2,3-Pyrrolidine dicarboxylate (D,L-cis-2,3-

PDC; Fig. 2), a new glutamate analogue and a L-trans-2,3-

PDC diastereoisomer, causes convulsions and whether

NMDA receptors are involved in the convulsant effect of

this compound. In addition, due to the presently reported

protective effect of MK-801 against D,L-cis-2,3-PDC in-

duced-convulsions, we evaluated whether it alters glutamate

binding to cerebral plasma membranes.
Fig. 2. Chemical structures of NMDA, L-trans-2,3-PDC, D,L-cis-2,3-PDC.
2. Material and methods

2.1. Reagents

All reagents were acquired from Sigma, MA, except

[3H]-L-glutamic acid, which was purchased from Amersham

Pharmacia Biotech; MK-801, which was purchased from
RBI; and D,L-cis-2,3-PDC, which was synthesized by Car-

pes et al. (1997).

2.2. Animals

Adult male Wistar rats (230–250 g) and male albino

mice (30–40 g), maintained in a 12:12-h dark/light cycle at

controlled temperature (22F 1 jC) with lab chow and tap

water ad libitum, were used.

2.3. Membrane preparation

Membrane preparation was carried out as described by

Emanuelli et al. (1998). Adult male Wistar rats were killed

by decapitation; cerebral cortices were removed and ho-

mogenized in 20 volumes (ml/g of wet tissue) of 10 mM

Tris–acetate buffer (pH 7.4) containing 320 mM sucrose,

and 1 mM MgCl2 using a hand-operated glass homogenizer.

The homogenate was centrifuged at 1000� g for 15 min

and the pellet was resuspended in 20 volumes (ml/g of wet

tissue) of the same buffer and centrifuged again. The second

pellet was discarded and the supernatant fractions were

pooled and centrifuged at 27,000� g for 15 min. The

resulting pellet was lysed in 20 volumes of 10 mM Tris–

acetate buffer (pH 7.4) for 30 min and centrifuged at

27,000� g for 15 min. This pellet was washed three times

in 20 volumes of 10 mM Tris–acetate buffer (pH 7.4) at

27,000� g for 15 min. The final pellet was resuspended in

three volumes of 10 mM Tris–acetate buffer (pH 7.4). All

steps were carried out at 4 jC and the membranes were

frozen at � 20 jC for no more than 1 month. On the day of

binding assay, the membranes were rapidly thawed in a

water bath (37 jC), homogenized with 3 volumes of 10 mM

Tris–acetate buffer (pH 7.4), and centrifuged at 27,000� g

for 15 min. The resulting pellet was resuspended in three

volumes (ml/ml of thawed membrane) of the same buffer,

preincubated at 37 jC for 30 min, and centrifuged at

27,000� g for 15 min. The pellet was resuspended in three

volumes of 10 mM Tris–acetate buffer, washed four times

in three volumes of the same buffer, and centrifuged at

27,000� g for 15 min. The final pellet was resuspended in

the same buffer in order to yield a protein concentration of

1–2 mg/ml and was used for the binding assays.

2.4. [3H]-L-glutamate binding

Sodium-dependent and -independent [3H]-L-glutamate

binding to cerebral plasma membranes was investigated



Fig. 3. Effect of D,L-cis-2,3-PDC on [3H]-L-glutamate binding in rat brain

plasma membranes. Results are presented as means (S.E.M.) of three

experiments and are expressed as activity percentage of control. * Sig-

nificantly different from control ( P < .05—SNK test).

Table 1

D,L-cis-2,3-PDC (intracerebroventricular) induces convulsive behavior in

mice

Treatment Onset latency

in seconds

(interquartile range)

Convulsions

ncv/nt (%)

Mortality

nd/nt (%)

0.85% NaCl 600 (600–600) 0/7 (0%) 0/7 (0%)

D,L-cis-2,3-PDC

2.5 nmol 600 (600–600) 0/8 (0%) 0/8 (0%)

7.5 nmol 68.0 (20.0–264.0)# 5/6 (83.3%) * 0/6 (0%)

25 nmol 10.5 (3.7–15.2)# 9/9 (100%) * 3/9 (33.4%) *

n= 6–9 animals in each group; ncv—number of animals which had

convulsions; nd—number of animals that died; nt—total number of animals.

* P< .05 compared to 0.85% NaCl (Fisher’s test).
# P < .0001 compared to 0.85% NaCl (Kruskal–Wallis test).
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according to Rao and Murthy (1993). Briefly, membranes

were incubated in a 0.5-ml reaction mixture containing 50

mM Tris–acetate buffer (pH 7.4), 40 nM [3H]-L-glutamate,

and 0, 0.05, 0.5, 5, 50, and 500 AM D,L-cis-2,3-PDC

(dissolved in water, pH adjusted to 7.4 with KOH). Sodi-

um-dependent binding was carried out in the same incuba-

tion medium described above, except that it contained 150

mM sodium acetate. Incubation was carried out at 30 jC for

30 min and the reaction was stopped by filtration using GF/

B glass microfiber filters. Dried filters were transferred to

eppendorf tubes containing scintillation liquid, and the

radioactivity was determined with a Packard scintillation

spectrometer at 40–45% efficiency. Specific binding was

calculated as the difference between total binding and

nonspecific binding, which was measured in the presence

of a 10,000-fold excess (4 mM) of the unlabeled L-gluta-

mate. All determinations were made in triplicate. Protein

concentration was measured using bovine serum albumin as

standard (Bradford, 1976). Data were analyzed by one-way

analysis of variance (ANOVA) followed by the Student–

Newman–Keuls multiple range test, when appropriate.

Standard errors were less than 10%.

2.5. Behavioral effects of D,L-cis-2,3-PDC on mice

Freehand intracerebroventricular injections into the lat-

eral ventricles of the conscious mice were made using a 29G

needle attached to a 10-Al Hamilton syringe (3 mm of the

needle tip exposed) according to Clark et al. (1988). The site

of injection was an imaginary line drawn through the

anterior lobe of the ears and from an imaginary midsagittal

line, and the whole injection procedure was completed

within 5–10 s in order to minimize discomfort and pain.

Immediately after behavioral evaluation, the animals were

decapitated and had the site of the intracerebroventricular

injection confirmed by needle track verification with a PZO

MST 131 stereomicroscope. Only data from animals with

the needle track aiming the lateral ventricle were considered.

In those experiments designed to evaluate the convulsant
action of D,L-cis-2,3-PDC, the animals were injected (intra-

cerebroventricular) with 5 Al of D,L-cis-2,3-PDC (2.5, 7.5,

and 25 nmol) or 0.85% NaCl. Immediately thereafter, the

animals were individually placed in a round open field (35

cm of internal diameter) and observed for 10 min for the

appearance of tonic–clonic convulsions. The latency for the

first convulsive episode (a full motor seizure with loss of

postural control, usually reported as a Class 5 motor seizure

according to the Racine scale) and the percent of animals

that presented convulsions or death were recorded (Racine,

1972). For statistical purposes, the animals that did not

present tonic–clonic convulsions up to 600 s were attributed

a score of 600. The involvement of NMDA or AMPA and

KA receptors in the D,L-cis-2,3-PDC-induced convulsions

was assessed by coinjecting the animals (intracerebroven-

tricular) with 7.0 nmol MK-801 or 10 nmol DNQX and 16.5

nmol D,L-cis-2,3-PDC or 0.85% NaCl alone and 0.85%

NaCl with the drugs above, in 2.5 Al plus 2.5 Al volumes

in the same syringe, separated by an air bubble (0.1 Al). The
animals were immediately transferred to the open field and

observed for 10 min for the signs of convulsions, as

described above. The D,L-cis-2,3-PDC dose was chosen on

the basis of its effectiveness to cause convulsions in 100%

of the animals without death (the dose–effect curve and

pilot experiments).
3. Results

3.1. Binding

Fig. 3 shows the effect of D,L-cis-2,3-PDC on sodium-

independent [3H]-L-glutamate binding to cerebral plasma

membranes. D,L-cis-2,3-PDC reduced sodium-independent

[3H]-L-glutamate binding by 50% in membrane prepara-

tions from adult rat cortex [F(5,12) = 28.1, P < .00001

ANOVA, considering D,L-cis-2,3-PDC concentrations (0–

500 AM) as a within-subject factor]. Partitioning of the sum

of squares into trend components revealed a significant

linear trend [F(1,12) = 112.2, P < .001], indicating that

sodium-independent [3H]-L-glutamate binding decreased
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linearly with increasing D,L-cis-2,3-PDC concentrations.

Interestingly, D,L-cis-2,3-PDC had no effect on sodium-

dependent [3H]-L-glutamate binding (data not shown).

3.2. Behavioral evaluation

Intracerebroventricular administration of 2.5 nmol of D,L-

cis-2,3-PDC did not cause convulsions, while 7.5 nmol of

D,L-cis-2,3-PDC induced generalized tonic–clonic convul-

sions, which lasted a few minutes. D,L-cis-2,3-PDC (25

nmol) induced long-lasting generalized tonic–clonic con-

vulsions immediately after its injection. Table 1 shows the

effect of the injection of increasing amounts of D,L-cis-2,3-

PDC (0, 2.5 or 7.5, and 25 nmol icv) on convulsive

behavior. Statistical analysis (H = 23.05, df = 3, P < .0001;

Kruskal–Wallis H test) revealed that increasing amounts of

D,L-cis-2,3-PDC decreased the latency to convulsion and

increased the percentage of animals that presented convul-

sions and death (P < .05, Fisher test). The most of animals

that received 25 nmol D,L-cis-2,3-PDC (66.6%) remained

alive after a 24-h period.

The involvement of NMDA receptors on the convulsant

effect of D,L-cis-2,3-PDC was assessed by coadministrating

MK-801 (7 nmol/ 2.5 Al), a noncompetitive NMDA receptor

antagonist, with D,L-cis-2,3-PDC (16.5 nmol/ 2.5 Al). The
coadministration of MK-801 protected the animals against

D,L-cis-2,3-PDC-induced convulsions, measured by the fre-

quency of convulsions (P < .05, Fisher test—Table 2) and

by the latency to the first convulsive episode (H = 19.55,

df = 3, P < .0001; Kruskal-Wallis H test).

The involvement of AMPA and KA receptors on the

convulsant effect of D,L-cis-2,3-PDC was assessed by coad-

ministrating DNQX (10 nmol/2.5 Al), a competitive AMPA

and KA receptor antagonist, with D,L-cis-2,3-PDC (16.5

nmol/2.5 Al). The coadministration of DNQX afforded a

slight protection against D,L-cis-2,3-PDC-induced convul-

sions since it increased the latency to convulsion (H = 23.72,

df = 3, P < .0001; Kruskal–Wallis H test—Table 2).
Table 2

Effect of MK-801 (7 nmol) or DNQX (10 nmol) on D,L-cis-2,3-PDC-

induced convulsions in mice

Treatment Onset latency

(interquartile range)

Convulsions

ncv/nt (%)

0.85% NaCl + 0.85% NaCl 600 (600–600) 0/6 (0%)

0.85% NaCl +D,L-cis-2,3-PDC

(16.5 nmol)

14.0 (11.0—16.0) * 6/6 (100%) *

MK-801 + 0.85% NaCl 600 (600–600) 0/5 (0%)

MK-801 +D,L-cis-2,3-PDC

(16.5 nmol)

600 (600–600) 0/5 (0%)

DNQX+ 0.85% NaCl 600 (600–600) 0/7 (0%)

DNQX+D,L-cis-2,3-PDC

(16.5 nmol)

26.0 (16.0–38.0) * 7/7 (100%) *

n= 5–7 animals in each group; ncv—number of animals which had

convulsions; nt—total number of animals. D,L-cis-2,3-PDC (16.5 nmol) did

not cause death.

* P< .0001 compared to NaCl–NaCl (Kruskal–Wallis test).
We also assessed the locomotor behavior of the animals.

Statistical analysis of open-field data (one-way ANOVA)

revealed that coadministration of MK-801 increased immo-

bility scores [F(3,17) = 5.63, P < .05] and had no effect on

number of crossing [F(3,17) = 2.41, P>.05] or rearing

responses [F(3,17) = 2.38, P>.05].
4. Discussion

The action of L-glutamate at the various EAA receptors

plays a central role in both neuronal communication and

CNS pathology (Cotman et al., 1995). Given their role, it is

not surprising that considerable attention has focused on

EAA receptor pharmacology and on the development of

selective agonists and antagonists of these receptors. It is

remarkable that recent progress has expanded the library of

EAA analogues beyond those originally used to delineate

the basic receptor classes (e.g., NMDA, KA, and AMPA).

These newer agonists have been valuable in characterizing

receptor channel properties, elucidating intracellular pro-

cesses triggered by receptor activation, and associating

specific pathological cascades with individual types of

receptors (Ishida and Shinozaki, 1988; Debonnel et al.,

1989; Shinozaki et al., 1989; Lanthorn et al., 1990; Kudo

et al., 1991; Schoepp et al., 1991, 1994; Madsen et al.,

1996).

In the present study, we demonstrated that D,L-cis-2,3-

PDC, a glutamate analogue, inhibited only sodium-indepen-

dent [3H]-L-glutamate binding in brain plasma membranes,

indicating an interaction with glutamate receptors. These

results suggest that this compound, differently from its

diastereoisomer L-trans-2,3-PDC (Willis et al., 1996) and

L-trans-2,4-PDC (Bridges et al., 1991), does not interact

with glutamate uptake binding sites. One should be aware,

however, that such a lack of effect of D,L-cis-2,3-PDC on

sodium-dependent binding does not imply a lack of effect of

this compound on amino acid uptake or release since

binding studies do not directly address functional activity

but do identify specific sites of action. Nevertheless, the fact

that a cis pyrrolidine dicarboxylate derivative does not alter

sodium-dependent [3H]-L-glutamate binding while trans

isomers alter it suggests that the cis configuration of the

carboxyl groups in the pyrrolidine ring affords some selec-

tivity towards nontransport glutamate binding sites. It

remains to be determined whether D,L-cis-2,3-PDC selec-

tively binds to ionotropic or metabotropic receptors, but

pharmacological evidence supports the involvement of

NMDA receptors in the convulsant effects of D,L-cis-2,3-

PDC, as discussed below.

It is remarkable that the intracerebral injection of D,L-cis-

2,3-PDC caused generalized tonic–clonic convulsions in all

mice in a dose-dependent manner (see Table 1). Moreover,

these convulsions were completely prevented by the coad-

ministration of the NMDA receptor antagonist MK-801, but

not by DNQX, a competitive AMPA and KA receptor
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antagonist, which caused a only a partial protection against

D,L-cis-2,3-PDC-induced convulsions. These results indicate

that D,L-cis-2,3-PDC cause convulsions by activating

NMDA receptors, and that the participation non-NMDA

ionotropic receptors in the convulsant action of D,L-cis-2,3-

PDC is of minor relevance.

In conclusion, in this study, we report that the glutamate

analogue D,L-cis-2,3-PDC interacts with nontransport gluta-

mate binding sites and causes convulsions in mice, which

seem to be due to the activation of NMDA receptors.

Further studies are still necessary to determine whether this

novel neurotoxin affects other glutamate-related functions as

well as its value as a pharmacological tool.
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